
The FirstSearch User Interface Architecture:
Universal Access for any User, in many Languages, on any Platform

Gary Perlman
OCLC Online Computer Library Center, Inc.

6565 Frantz Road
Dublin, Ohio 43107 USA

+1 614 761 5058
perlman@acm.org

ABSTRACT

The OCLC FirstSearch� service allows users to search for
bibliographic and full text records in over 80 online
databases. Web-based, FirstSearch was designed to adapt
to unexpected user needs, platform considerations,
languages, and changing requirements. The many
unknowns during development necessitated an architecture
that would allow many types of contributors to modify the
interface easily and frequently. For example, marketing,
documentation, and user interface designers edited the
strings used in the interface, including translation; and user
interface and graphic designers edited the screen layout.
Structured initialization files with a simple convention for
adapting to specific users, platforms, languages, etc.,
allowed continual broadening of the accessibility of the
system without complicating the overall architecture.
The paper begins with a discussion of the general
requirements for FirstSearch (multi-platform, multi-lingual,
levels of users, low-end hardware, accessible) and the need
for better coordination of contributions from the
FirstSearch team. The architecture is then described, which
partitions the specification of the interface into platform -
specific, language-specific, and language/platform
independent functional components. The user interface, in
the form of Web pages, is then generated dynamically
(although it would also be possible to generate static
pages). The paper ends with a discussion of experiences
with the changes to the interface and a cost-benefit analysis
of the architecture, with the overall conclusion that
addressing many accessibility issues in the architecture
facilitated individual accessibility issues.

Keywords

Accessibility; customization; declarative interface
specification; disabilities; disabled; diversity; global;
globalization; globalisation; group and individual
differences; handicapped; i18n; impaired; impairment;
intercultural; international; internationalization;
multilingual; software localization; special needs;
translation; universal access;

"The power of the Web is in its universality. Access by everyone
regardless of disability is an essential aspect."

Tim Berners-Lee, http://www.w3.org/WAI/

PROBLEM: SECOND SYSTEM EFFECT

The OCLC FirstSearch® service is a Web-based
bibliographic and full text retrieval system (at
NewFirstSearch.oclc.org). FirstSearch delivers to libraries
and their patrons over 80 databases, each with about 10-30
indexes (e.g., keyword, author, title, subject, date, ...), to
access a combined total of over 200 million records and
millions of full text articles. Over 15,000 libraries
subscribe to the service, submitting at times over 300,000
searches per day.
Originally delivered as a text-based system in 1991, the
Web-based version of FirstSearch, released in 1996,
steadily gained popularity over the text version. The system
was built on the OCLC SiteSearch® Z39.50 Web-server,
which maintains persistent information about a user's
search/retrieval session. The original SiteSearch was
developed in C and contained several embedded
proprietary languages developed by the OCLC Office of
Research. The desire to add new features and to be able to
adapt more easily to user needs motivated the development
of a new version of FirstSearch, built on the new Java-
based version of SiteSearch. The new FirstSearch would
have many new features:

• limit results to a library's holdings (books / serials)
• limit results to full text available to an account
• search across multiple databases, made possible in

part by standardizing indexing across all databases
• sorting and ranking options
• wildcards and truncation
• integrated thesaurus
• a high degree of customization

The difficulty of adding desired features in the old system,
and the relative liberation of a dynamic Java environment,
led to what Brooks (1975, Ch.5) might call a second-system
effect of trying to incorporate every feature for which there
was a desire in the first system.

About a year was spent developing the detailed
requirements, during which time design options were
unclear, because we were in areas of little experience:

• new functionality
• new application layer and search engine

(SiteSearch, being developed during and after
FirstSearch requirements)

• new programming language (Java)
• new version of operating system on new hardware,

including a new high-performance file system
There were several general requirements for the user
interface of new FirstSearch. Although we had devoted
considerable effort to the detailed requirements, cross-
platform, text-only, multilingual, and accessibility and help
requirements were expressed with little more than a
sentence each.

Multi-Platform: Run on Everything

The system would work on all current browsers. We
proposed supporting the 4.x versions of

• Netscape Navigator (used by about half our users)
• Microsoft Internet Explorer

Initially, we wanted to require JavaScript, and even CSS
(Cascading Style Sheets), but Navigator 4.0 had limited
support for features we could provide by other means.
Then, we realized that many sites (e.g. libraries with
hundreds of old machines) would not be willing or able to
upgrade their browsers. We committed to support the 3.x
versions of Navigator and Explorer, although with some
compromises due to limited functionality (e.g., MSIE 3).
We committed to support:

• JavaScript enabled
• JavaScript disabled, missing, or lacking

We committed to support different screen sizes:
• large: more than 900 pixels wide
• medium: from 700 to 900 pixels wide (most

common among our users)
• small: less than 700 pixels wide

across different hardware/operating system:
• Windows
• Macintosh

and to test 256-color screens and for grayscale contrast.

Text-only Version: Run on any Hardware

In addition to the graphical UI browsers, we wanted to
support a version that could run in a telnet window
because, for a small number of high-frequency users, telnet
is the only access. We chose to create a version of the
interface that would work reasonably well with Lynx, a
text-based HTML browser that would run on our server.
This would replace the telnet text version of FirstSearch.

Multilingual Interface: Run in Many Languages

We planned to translate the interface and online help into
three languages initially:

• English
• French
• Spanish

We hoped this would be easier than our multilingual effort
in the old Web-based version (Hysell & Perlman, 1999)
which was not developed with internationalization in mind.

Universally Accessible: Run for Everyone

There was a requirement to be "ADA compliant"
(Americans with Disabilities Act) although with no
knowledge of what that entailed, not even that, at the time,
there were no defined standards. Initially, we thought that
the text-only Lynx interface would serve that purpose, but
later found that text-screen-readers serve some users, while
specially adapted graphical browsers serve others.

Levels of Users: Usable and Useful to Everyone

We planned to support three search modes:
• Basic, with support for the most used features
• Advanced, with all features
• Expert, to better support query language users

Library and Patron Customization

We planned to allow libraries to customize their version of
FirstSearch, setting default options, including branding
elements such as library logo. We planned to consider
allowing individual patrons to set personal preferences that
would persist across sessions.

Group Coordination Issues

Different groups of people were given primary
responsibility for the different dimensions of the user
interface:

• marketing, for requirements and terminology
• development, for functionality
• database, for loading new databases
• graphic design, for icons, fonts, colors, and

layout
• usability, for interaction design/re-design
• documentation (including translation), for on-

screen help, online/printed help
This is an over-simplification because many groups
contributed to many dimensions. Still, few individuals
think about all the above concerns when working on a
specific task, so it was a user interface coordination goal to
make sure that, for example:

• developers did not put any non-portable platform-
specific HTML or language-specific terms in Java
code or database configuration files

• graphic or user interface design that worked on
one platform worked on all platforms, particularly
if it used JavaScript

• terminology that was used in one part of the
system would be used consistently in all parts of
the system (including help) and that the
terminology physically fit in the space allocated
(in all languages)

DESIGN APPROACH: CROSS-PRODUCTS OF
PARTITIONED INFORMATION TO DEFER DECISIONS

FirstSearch required a generalized approach to ensuring
universal access because there multiple dimensions of
accessibility: platform, language, disability, etc. (Perlman,
1999). The highest priority goal for the user interface
architecture was to be able to adapt the interface to
inevitable requests for changes (due to as yet unknown
usability, performance, functional, etc. considerations).
Because there were so many unknowns, the architecture
had to be incrementally scaleable starting with a simple
model of the user interface, but able to expand, as we
understood more. Previous experience (Perlman, 1989)
suggested that partitioning the system into orthogonal sets
of information and building the system by forming the
cross-product of those sets would allow incremental
elaboration and optimal redesign. The method is similar to
word-processing mail merge except that instead of inserting
address information into letter/label templates, attributes of
functions are inserted into platform-specific templates for
Web pages. The partitioning chosen included:

• functional aspects: specific functions for database
selection, search, and results

• platform-dependent aspects: adapting the
display to different platforms

• language-dependent aspects: language used in
the system, gathered together for easier translation

Functional Partition: The FSPage Model

The first step in developing the UI architecture for
FirstSearch was to apply information design to identify
some parts (attributes) of pages. A page is an object with
the information used to construct what a user observes and
does on a single Web page. Initially, the specific pages in
the system were unimportant because we knew that new
pages would be added and some existing pages would be
merged with others or deleted. A canonical sequence of
pages in a FirstSearch session is database-selection, search,
and results. Similar to pages, the specific attributes of
pages were unimportant because it should be easy to
add/delete/change attributes. Each page in FirstSearch has:

• pagename: an internal identifier
• pagetitle: a title displayed to users
• pagelabel: a short phrase for links in menus
• tips: on-screen help tips
• status: on-screen status information
• controls: page-specific controls
• action: a form action
• panel: a main form panel

Individual pages can have any of about 10 other specialized
attributes (e.g., how to process form elements in the panel,
error handling). Attributes can contain constant text and
any number of entities (SiteSearch constants, variables, and
Java method calls), so they are highly dynamic.
To make these pages platform-independent and language-
independent, we extracted the platform-dependent parts
into a style file and the language-dependent parts into a

language file. We replaced what was extracted with entities
defined in configuration files (called INI files). The
resulting platform- and language-independent page
definitions were placed in pages.ini, a configuration
file with a section for each page. For example, the
definition for the expert search page looks something like
Specification 1, which appears to users like Screen 1.
Specification 1: Expert search page.
[expert]
pagename = expert
pagetitle = &Lang.pagetitle.expert;
pagelabel = &Lang.pagelabel.expert;
tips = &Lang.tips.expert;
status = &Lang.status.expert;
controls =

&Style.dbinfo.gadget;
&Style.scanindex.gadget;
&Style.thesaurus.gadget;
&Style.news.gadget;

action = /FSQUERY:searchtype=expert
term = termexpert
index = indexexpert
focus = termexpert
panel =

&Style.dialog.begin;
&Pages.basic.submit;
&Pages.expert.searchbox;
&Pages.expert.index;
&Pages.advanced.limits;
&Pages.advanced.options;
&Pages.basic.submit;

&Style.dialog.end;
searchbox =

&Style.dialog.rowbegin;
&Style.font.labelbegin;

<label for=termexpert>
&Lang.label.find;

</label>
&Style.font.labelend;
&Style.dialog.elementbegin;
<textarea name=termexpert id=termexpert>

&termexpert;
</textarea>

&Style.dialog.elementend;
&Style.dialog.rowend;

Screen 1: Expert search screen rendered on Explorer 5.
Accessibility features show tips on input elements.

Many of the attributes are references to language entities
(e.g., &Lang.tips.expert;) defined in language files
(one for each language). Some of the attributes are style
entities, used to mark the beginning and end of structurally
meaningful parts (e.g., &Style.dialog.begin/end;).
Other entities include references to other parts of pages, so
that definitions can be modular and reused (e.g., all search
screens use the Basic submit buttons defined in
&Pages.basic.submit;). Special purpose attributes
indicate the names of terms and indexes used on search
screens, and where to focus the cursor if JavaScript is
available. Specification 2 shows a different page.
Specification 2: Detailed record page.
[record]
pagename = record
pagetitle = &Lang.pagetitle.record;
pagelabel = &Lang.pagelabel.record;
tips = &Lang.tips.record;
status = &Lang.status.record;
controls =

&Style.thesaurus.gadget;
&Style.ill.gadget;
&Style.holdings.gadget;
&Style.email.gadget;
&Style.print.gadget;

action = /FSFETCH:fetchtype=record
panel =

&Style.dialog.begin;
&Style.dbsuggest.gadget;
&Style.navigate.gadget;
&Style.record.gadget;
&Style.navigate.gadget;

&Style.dialog.end;

Practical Partitioning

With the page object defined, the most difficult aspect of
partitioning the language and style information was
locating the information to be partitioned and then doing it
consistently. We found that it was nearly impossible to
explain to developers why and how to keep this
information separate, perhaps because it required an
understanding of translation, cross-platform development,
accessibility issues, and general usability considerations.
Another problem with having developers create language-
independent and platform-independent code was that the
language and the formats were being developed as the
system was being built.
Our approach was to have developers create screens using
untamed English and HTML and then partition the
information for them. Platform-specific parts were
extracted and replaced with style entities for runtime
substitution based on the user's platform and preferences.
See Figure 1.To internationalize the design, we moved
language strings into a language file, replacing them with
language entities to create language-independent HTML;
later, the language-specific values would be inserted into
the HTML by substituting language entity values in the
user's language. See Figure 2. During the process, choice
of language and interface design could be reviewed, and
later, design decisions were centralized so that decisions
could be changed.

Figure 1: Partitioning platform-dependent information into
a style file for later dynamic entity substitution.

extract
formats /

styles

style
entity

substitution
Style file

Platform-
independent

HTML file

Figure 2: Partitioning language strings into a language file
for later dynamic entity substitution.

replace
language
strings

language
entity

substitution
Language file

Language-
independent

HTML file

Platform-Dependent Partition

The FSPage object contains references to platform-
dependent parts, parts that will display differently on
different platforms, and which will require different
HTML. There are many factors that may affect how the
interface design is presented to users, including:

• browser name and version (and sub-version)
• operating system
• screen size
• whether JavaScript is enabled

For example, if JavaScript is available, a Help window can
pop up, be sized based on the screen dimensions, and show
shortcut keys that are based on the operating system.
There are many methods to adapt to different displays,
ranging from using lowest-common denominator features,
to unique sub-sites for different displays, to dynamically
customized displays. Given the number of platforms
planned for FirstSearch, and the many differences among
these platforms, dynamic generation of HTML was an
obvious choice.
There are many ways to implement dynamic generation of
HTML. At an architectural level, these should be
interchangeable to adapt to changing technology.

• XML: was untried, and many of the features we
needed were already provided by SiteSearch

• CSS: SiteSearch entity substitution provided the
features we needed, and for non-CSS browsers.

• Java applets: Java was unacceptable to many
users because of security / performance concerns.

The method chosen for FirstSearch was designed to
abstractly represent the structure of displays separate from
the final rendering. For example, an untamed error message
might be initially marked up as:

Something bad happened

Styles could be replaced by entities:
&ErrorBegin;

Something bad happened
&ErrorEnd;

and defined elsewhere:
[styles]
ErrorBegin =
ErrorEnd =

A line in a search form might be marked up as:
&SearchFormBegin;

...
&SearchLineBegin;

&LabelBegin;
Find:

&LabelEnd;
&FormElementBegin;

<input type=text name=terms>
&FormElementEnd;

&SearchLineEnd;
...

&SearchFormEnd;

These examples have been simplified to better explain the
methods used in FirstSearch; the real versions have many
gory details. SiteSearch, on which FirstSearch is built,
allows the definition of entities that are substituted into the
outgoing HTML. So by changing the definition of these
structural entities, we can change the HTML that will be
generated. For example:

• on graphical browsers: the error message above
might be preceded by an error icon and appear in
large red font
• If JavaScript is enabled: the error message

might be placed in an alert box (although it is
not in FirstSearch)

• On large screens: the message may be made 2
sizes larger

• On medium screens: the message may be
made 1 size larger

• On small screens: the message may be left the
same size

• on a non-graphical browser (e.g., Lynx): the error
message may be bold and surrounded by lines

The fine granularity of control and the likelihood of
editorial changes made it undesirable to code these changes
in Java. Instead, a declarative method of specifying custom
values was adopted.

1. When a session starts, all the potential
customizing variables, e.g., browser attributes, are
stored in about 30 entities.

2. Default entities (about 50) are read from an
initializing configuration file.

3. Customizing entities are set based on values read
from conditional INI-file sections.

Ordinary INI files contain named sections (e.g., [styles])
and entity definitions in those sections. Conditional
sections are named by entity-value pairs. For example, the
browser entity may be Mozilla, MSIE, Lynx or some other
value. Conditional styles could be defined for each browser
value, or for those that require special settings:
[styles]
section* = browser
[browser=Lynx]
ErrorBegin = <hl>
ErrorEnd = </hl>
[browser]
ErrorBegin =
ErrorEnd =

The reference to section* causes the system to read the
conditional section named browser. If browser is Lynx,
the section called [browser=Lynx] is used. Otherwise,
the default [browser] section is used. This can be further
elaborated based on sets of conditional sections. For
example, if we wanted the error message font size to
depend on the screen size, we could insert an entity into the
error message style and set the value of the entity in
conditional sections:
[styles]
section* = browser
section* = screensize
[browser=Lynx]
ErrorBegin = <hl>
ErrorEnd = </hl>
[browser]
ErrorBegin =
ErrorEnd =
[screensize=large]
ErrorSize = 5
[screensize=medium]
ErrorSize = 4
[screensize]
ErrorSize = 3

Once conditional sections are set up, it is easy to add
conditional entities. A major advantage of setting these in
INI files is that the changes can be viewed while the system
is running. The INI files can be re-read and entities re-set
without changing any code. Another advantage is that the
all the peculiarities of particular platforms are specified
together. For example, the entire color scheme for MSIE 3
is different than for the rest of the system because that
browser version does not support changing the color of text
if it is in a hot link. Another example is that only MSIE 4+
handles Greek entities like α. for browsers that do
not display them properly, we remove the entity delimiters
(i.e., show "alpha" instead of α). FirstSearch uses
conditional sections based on browser, operating system,
screen size, JavaScript, and others to set over 100 entities.

Language Partition: Internationalization / Localization

FirstSearch was internationalized by moving all language-
specific terms (about 5000) into INI files, and by replacing
those terms by entities that refer to the section and entity
name in that section. In FirstSearch language files, sections
are used to distinguish how / where some text will be used.
For example, all diagnostic message are stored in a section
called [msg]:
[msg]
bad = Something bad happened
nohits = Your search matched no records
nojs = Your browser doesn’t support JavaScript

Entities in language files are accessed by naming the entity
(Lang) followed by the section (msg) and the variable
name (bad) like this: &Lang.msg.bad;. So the platform-
independent, language-independent version of the error
message above becomes:
&ErrorBegin;

&Lang.msg.bad;
&ErrorEnd;

When a user chooses a different language, entities in a
different language INI file are associated with their session.
Structure: For the FSPage object, pagetitle, tips, and
status are all sections in the language file. Each section
contains variables, one for each page, defining the page
title, on-screen help tips, and status. Being in the same
section makes it easier to make the text for different screens
consistent, both in English and when translating. It
requires, however, that developers place page attributes in
different sections of different INI files. To make it easier
for the user interface and database groups to work together,
we separated the user interface language INI file from a
language file for database-specific terminology (which
accounted for about two-thirds of the language used in the
system). This reduced contention while both files went
through hundreds of revisions.
English as the Second Language: Although the
development was in English, with English strings being
moved into the English language files for later translation,
there was an initial translation step that took almost as long
as the translation into Spanish and French. The initial
language was a dialect of English used by librarians and
developers of systems for searching library materials; call it
Jargonese. Some of the terminology was inappropriate for
library-naive users, all the more common because of the
advent of the Web. So internally, a screen might be called
"history", but to the users, it would be known as "Previous
Searches", and we would actually display the language
entity &Lang.pagetitle.history; so that if the name
changed, the change would be propagated throughout the
entire system, including documentation.
Finding Entities and Previewing Translation: To help
translators and documentation writers determine where an
entity was defined, we created an entity language in which
the value of an entity was the section and variable name
where it was defined (e.g., &Lang.pagetitle.history;
would be displayed as pagetitle~history). Then they

would know that the string displayed in English as
"Previous Searches" was the history variable in the
pagetitle section. To help translators see their
translations, we provided a facility for dynamic reloading
of entity values on the current screen so they would not
need to start a new session. Preview was important because
the translators needed to ensure that their edits fit and did
not break any embedded HTML or entities. Marketing used
preview to review English that was replacing Jargonese.
Screen 2: French version of the expert screen. Users can
change language at the bottom of the left navigation menu.

Template-Based Page Generation

The first prototype systems were based on ad hoc format
flat-file databases accessed with perl scripts to generate
HTML files. Eventually, the information about pages
migrated into semi-structured INI files, and HTML files
evolved into dynamically-generated HTML. The pages and
attributes evolved over time, gradually increasing in
complexity, and keeping them in an easily editable format
was a positive feature.
HTML pages are generated in FirstSearch by inserting
page-specific entities into templates (See Specification 3).
FirstSearch templates were created for the graphical-
browser version, the text-only Lynx version, a printable
(cleaned up) version, etc. Templates can (and perhaps
should) start as simple renderings of some attributes, but
are scaleable in that they can be augmented easily.
Templates can also facilitate major changes. Initial versions
of the FirstSearch interface were framed, but because of
transaction costs, we decided to evaluate an unframed
version. Creating an unframed version of the whole
interface took about an hour, and the results motivated us to
change to an unframed interface. This change was made by
one person, changing one set of templates into a single
template, in less than a day. At various times, we have been
able to design, create, and view completely different
interface designs that were fully functional systems.

Specification 3 is a simplified template for the Lynx
interface, which is simpler than the graphical version. Note
that most page attributes have been assigned to entities
(e.g., the pagetitle is in &FSpagetitle;). The user’s view
of the screen is shown in Screen 3.
Specification 3: Template for Lynx displays
<html pagename="&FSpagename;">
<head>

<title>&FSpagetitle;</title>
</head>
<body>

&FSpagetips;
&FSpagestatus;
<form method="POST" action="&FSpageaction;">

&FSpagepanel;
&FSpagecontrols;
&StyleTable.FSMenu.gadget;

</form>
</body>
</html>

Screen 3: Expert screen for Lynx text-browser users. The
navigation menu (not shown) is appended to the display.

Expert Search
Current database: WorldCat

Type search terms and choose limits.
Click on Search.

[Search]
dog_____________________________________
__
__
__
__
__
Indexed in: [Keyword (kw:)_________]
Limit to:
Year 1990-______
Document Type [Books________]
Language [English___________]
Library Code ___________
[_] Items in my library (OCL)
Rank by: [No ranking__________]
[Search]

[info] [index] [subjects] [news] [help]

This Lynx template is one of many possible renderings of
the parts of pages. One advantage of the framed version of
the interface was that the main frame contained all and only
the information that users would want to print. When the
framing was removed, it took about an hour to create a
template for a printer-friendly format that did not show
menus and controls.
Templates are easy to evolve. To move the controls for all
pages, move one line. To duplicate the controls above and
below the main panel, copy one line. Many changes are
unanticipated, so the flexibility of being able to make
global changes is highly desirable. One developer wanted
to place an entity value on every page in the system; it was
a one-line change. Quality assurance wanted to add
specially formatted comments to delimit logical sections of
the screens (to help highlight differences in regression test
scripts); the change took less time an hour.

Because templates can be defined hierarchically, they can
share reusable parts. This can minimize the cost of new
versions of templates, say, for a version that takes full
advantage of Cascading Style Sheets.

Accessibility Issues

Initially, we thought that the text-only Lynx version would
be the best platform for a screen-reader for a sight-impaired
user. After interviewing one of our staff, who is blind and
uses Web-aware HTML-reading software, we broadened
our approach to include all browsers.
Because the HTML for formatting the display is localized
in style files, most changes to adapt to the WAI Guidelines
could be added centrally. Microsoft's Internet Explorer 4+
(MSIE4+) provides substantial support for accessibility-
oriented tags, including some features useful for all users:

• title: The title attribute provides extra information
about what it is attached to. FirstSearch uses title
tags for input fields to provide more detailed
prompts, and on links to explain where they will
lead the user. See Screen 1, 2, 3 text areas.

• label: The label tag allows a label to be more
formally associated with a form element with
which it is logically associated. Web screen
readers know that a label is associated with a
checkbox, and MSIE4+ lets users control form
elements by clicking on their labels. See
Specification 1.

• accesskey: The accesskey attribute allows Alt-x
keys to be associated with form elements.
FirstSearch associates Alt-s with submit buttons,
and Alt-c with the clear button.

Levels of Users

FirstSearch is designed for different levels of users with
three search levels: basic, advanced, and expert. These
differ in the number of search boxes, number of indexes
offered, number of limits shown, and the help offered.

 Basic Advanced Expert

Search box 1 small 3 small 1 large

Indexes 3 10-15 20-30

Limits full-text
library all all

Help simple
examples

examples
of more
features

on-screen
reference
material

Customization

The FirstSearch administrative module allows libraries to
customize FirstSearch: choosing default search modes,
topic areas, library logo, links into library catalogs, and
most options for controlling the access to for-fee items
(e.g., full text of journals).
We are also exploring patron customization of the interface
by saving settings across sessions. See Screen 4. Patron

settings were implemented in a few hours because the user
interface architecture is designed to allow setting groups of
entities. The same architecture is flexible enough for us to
explore gender and age-based customization.
Screen 4: Customized colors, logo, and other preferences.

Coordination Issues

The partitioning of the user interface, and the plain text
format of the interface initialization files, allowed non-
developers to make changes to the developing system
without involving programmers. For the first time, non-
programmers had interactive control over the parts of the
system for which they had responsibility, and it took many
user interface decisions out of the hands of programmers
(which was generally received positively by all).
Most contributors were not able to follow detailed
instructions about how to develop platform-independent
and language-independent screens. A few guidelines
proved to be more effective (e.g., no HTML in Java code).
For practical purposes, most programmers found it easier to
write untamed code and partition it when it was ready. As
problems were identified, checking scripts were enhanced
to find problems automatically.

OBSERVATIONS AND CONCLUSIONS

The partitioned user interface architecture was designed
with the main goal of being able to adapt to changing
requirements. In achieving that goal, it allowed the rapid
exploration and implementation of a variety of universal
usability dimensions: cross-platform, multi-lingual,
accessible, and in general, environment-sensitive versions.

We could develop, largely with conditional sections of
initialization files, parameters to adapt to the presence of
JavaScript, quirky performance of certain browsers, custom
parameters for different screen sizes, etc. The performance
costs for dynamic generation of HTML have been small,
and in some ways have improved performance because
generated pages do not require any file access.
As we have gathered feedback and done more usability
testing, we have made changes to the system. Returning to
the highest priority goal of adaptability, it was not critical
to get the design right, but it was critical to be able to
change what was wrong. Global changes to reorganize all
screens took minutes or hours of editing a single template
instead of days or longer. Small changes have had
invariably low costs, and larger changes have had generally
proportional costs (although they sometimes have
multiplicative benefits when applied to templates because
templates apply to many pages).
What is perhaps the most striking result of designing an
architecture capable of adapting to change is how it helped
with areas for which we did not anticipate change. We
knew the screen layout would change, and we knew the
terminology would change, but we did not know we would
be using label tags and title attributes for accessibility, nor
that the same methods for adaptation to platform could be
used for user-customizable versions of the system. The
demands of a few universal access issues required a
framework that helped address many.

REFERENCES

1. Brooks, F.P. The Mythical Man-month: Essays on Software
Engineering. Addison-Wesley, 1975.

2. Hysell, D. & Perlman, G. Lessons Learned from International-
izing a Global Resource, in G. Prabhu & E. delGaldo (Eds.)
Designing for Global Markets, 1999, 183-192.

3. Perlman, G. “Coordinating Consistency of User Interfaces,
Code, Online Help, and Documentation” in J. Nielsen (Ed.)
Coordinating User Interfaces for Consistency, pp. 35-55,
1989, Academic Press.

4. Perlman, G. “CHI 99 SIG: Universal Web Access: Delivering
Services to Everyone.” SIGCHI Bulletin, 1999, 31:4, 53-54.
Companion site at: http://www.acm.org/~perlman/access/

ACKNOWLEDGEMENT

I would like to thank Mike Prasse for his comments.

